
Business white paper

Target the disconnects
between development
and operations
Focusing on key challenges to
kick-start your DevOps journey

Like everything in IT, actually
achieving a successful DevOps
initiative is easier said than done.

3

According to Gartner, “Relations between Development and
Operations are generally viewed as poor, with some even
characterized as toxic.”1 That’s pretty strong language. Hopefully,
though, your situation is not quite as dire, and your development
and operations teams at least talk to one another in the cafeteria.

It is true, however, that in most IT organizations these two teams are
separate entities, and the recent trend toward closer collaboration
between them, commonly referred to as “DevOps,” indicates a
general awareness on the part of IT that things would be better if
application development teams and operations teams would work
together more harmoniously.

But like everything in IT, actually achieving a successful DevOps
initiative is easier said than done. Part of the challenge is that
DevOps is still ill-defined—more a set of principles than targeted
outcomes. We all agree that better collaboration would be a good

thing, but to what end? Being able to articulate your objective for
undertaking a DevOps initiative is the first step. This will allow you to
focus and prioritize your efforts so you can reap the greatest benefit.
For many, the ultimate goal is end-to-end agility—shortening
overall cycle-time from idea inception to delivering the value into
the hands of your users. To achieve such an objective, IT leaders
have to get down in the weeds and look at the specific disconnects
that make the separation between teams a liability.

We developed this white paper to help you take a targeted approach
to tackling DevOps. Based on extensive HP experience in helping
IT organizations operate more effectively, we’ve identified seven
common disconnects that you can translate into actions for unifying
these traditionally siloed functions. By focusing on these specific
challenges, you can turn the potentially toxic relationship Gartner
mentions into effective collaboration that increases the overall
velocity of your organization.

0 10

7

9

47

34

3

20

Percentage of respondents

30 40 50

Very collaborative

Collaborative

Un-collaborative

Very un-collaborative

Toxic

Figure 1
How would you describe the relations between your
Application Development and IT Operations organizations?

4

1. The velocity mismatch
Possibly the most significant disconnect today between development
and operations is that the two groups have very different perspectives
on change and how quickly it should be introduced. This difference has
been amplified in recent years by the emergence of Agile development
methodologies aimed at what the Agile Manifesto calls “early and
continuous delivery of valuable software.”

Development teams are working hand in hand with business
stakeholders to rapidly deliver the change needed to take advantage
of new opportunities and respond to competitive threats. In stark
contrast, operations teams strive to tightly control change because
they view it as introducing the risk of poor performance, outages, and
security vulnerabilities. As development creates functionality faster,
operations fears that the traditional testing practices they depend on
to reduce those risks will be compromised for the sake of speed.

Reconciling these differing views is perhaps the biggest challenge
to DevOps because it requires not just a process change, but also a
cultural shift. To overcome this hurdle, the operations team must
be reassured that lightening-fast changes are not jeopardizing its
mission. Quality thus becomes the first and most critical bridge
between the two groups. And the way to build this bridge is through
a systematic approach to automated testing that begins at the
point which change is introduced—code check-in by the developer.
By automating testing and executing these tests as part of your
continuous integration strategy, you can move toward a practice of
near-continuous testing, dramatically shortening the feedback cycle
to developers and allowing defects to be identified and fixed almost
as soon as they are introduced.

A continuous testing regimen can incorporate a wide spectrum of
testing: build, verification, regression, functional, performance,
security, and acceptance. A rigorous, automated process that
progressively verifies each dimension of quality will assure the
operations team that velocity and quality can coexist.

Agile delivery IT operations

Features and
code changes

Figure 2
Agile development speeds the creation of new features, but the advantage is lost if those features are bottlenecked in the release process.

5

2. Different measurements and
incentives equal different behaviors
One straightforward yet fundamental change that can have a dramatic
impact on how effectively development and operations work together
is to reexamine how the two groups are measured. Having operated as
silo organizations for decades has meant that most development and
operations organizations have ingrained measurements that optimize
their piece of the puzzle, but don’t necessarily fit together well to
achieve the end-to-end business objective.

Development teams have a long-standing tradition of being
measured against the “iron triangle” of cost, time, and scope. The
other dimension of quality is the one that, more often than not, gets
short shrift (much to the operations team’s dismay). Operations
teams, as stewards of the business processes that keep revenue
streams flowing, focus on and are measured by the stability and
availability of the systems.

While these venerable approaches may make sense in isolation, they
are myopic when it comes to the overall picture. And as long as the
two groups are measured on very different things, their behavior will
resemble competition more than cooperation. By aligning metrics,
you can reduce friction and encourage the teams to pull together in
the same direction.

Consider establishing aligned performance metrics across groups
that take a holistic view. Examples include cycle time, percentage
of releases that are successful on the first attempt, and percent of
defects found in production.

And if at all possible, use a dashboard to create a single view across IT
functions so that IT managers can set key performance indicators (KPIs)
at the business level and cascade them downward to both development
and operations—putting both teams on the same page with a shared
world view and giving them mutual metrics and incentives.

3. An opaque wall between organizations
In addition to the alignment of measurements and incentives,
development and operations teams will benefit from greater insight
into each other’s priorities, processes, and progress. Knowing what
the other team is working on, how things are going, and when they’ll
be done eliminates surprises and confusion and contributes to
overall efficiency.

Pulling down the organizational barriers and building DevOps
collaboration can begin with something as simple as Agile teams
inviting operations representatives to sprint planning sessions and
end-of-sprint demos. Shared education sessions on each other’s
processes and pain-points can also provide a greater appreciation
for each other’s challenges and insight into how one team can make
life easier for the other.

A common, integrated view into the state of development will aid in
transparency and serve to connect IT functions. This allows all the
stakeholders to openly see progress and things like quality, defect
levels, and fix rates. Operations will be keenly interested in this, as
they will ultimately be assuming responsibility for the applications.
Collaboration and visibility throughout also mean a smoother
handover when it is time for operations to take the changes.

In the other direction, operations should have tools that integrate
back into the development environment. For instance, the support
team should be able to easily channel production issues back to the
development team so these can be quickly prioritized against other
items in the backlog. This helps to make sure that development is
working on the highest priority items for the business, irrespective
of the item’s origin.

Finally, to super-charge the idea sharing and problem solving that
fuels day-to-day progress, larger or distributed teams benefit
greatly from the latest in social-media-style collaboration tools that
structure conversations around specific work items. This results
in focused, context-aware discussions that bring the right people
together to address a question or problem regardless of their team
affiliation or location.

6

4. Functional versus
nonfunctional requirements
Another important cultural difference is the fact that developers
gravitate toward functional requirements, or what the business
users want the applications to do, while operations is more
concerned with nonfunctional requirements, or how the applications
perform and behave once they are live.

If you ask a developer about the requirements for a new ATM feature,
the response might be, “It has to access the history of each customer
who uses our ATM; identify, based on the customer’s account balance
and other factors, banking services the customer doesn’t have but
might be interested in; and display a promotional screen on the ATM
while the customer’s transaction is being processed.”

If you ask an operations engineer about the requirements for the
same feature they might reply, “The service must execute within one
fourth the time of the average ATM transaction, without exceeding
available bandwidth, and support up to 10,000 customers accessing
ATMs simultaneously.”

Trapped in its own definition of the requirements, development
might deliver a beautiful and compelling splash screen that also
happens to be such a bandwidth hog that it bogs down the ATM
transaction. Or operations might insist that the application is
working fine because it is executing within speed and bandwidth
parameters, even though none of the customers are responding to
the cross-sell promotions on the ATM screen.

Adopting the broader view is again the solution for resolving
this disconnect. As seasoned developers have learned, the
development mindset must expand to encompass not only
functional requirements, but also non-functional requirements
like performance and security. It means creating applications
that are easy to enhance and that are easy to deploy, monitor,
and troubleshoot. These things may not be as exciting from a
development perspective, but they are absolutely critical from
an operations perspective. Analysts actually estimate that for an
application with a 15-year life span, more that 90% of the total
cost of ownership comes after the initial build—in the running,
maintaining, and enhancing of the application. This makes the
build-to-run concept a true business imperative.

5. Different environments,
different approaches
In most organizations, as a change is implemented it progresses
through a series of environments such as development, test,
staging, and production. Each of these environments serves a
different purpose and a different set of stakeholders. They are
typically managed in different ways, using different assets, often
maintained by different people. The process of deploying to them
typically consists of a raft of manual steps carried out by multiple
people armed with lengthy checklists, which are often outdated or
riddled with errors. This time-honored approach is far from agile and
begs for mistakes to be made. In fact, it is a significant contributor
to many of the headaches experienced between development and
operations and the source of the constant refrain of “the build is
broken” or “it works on my machine.”

This is an area ripe for automation. Automation allows teams to
eliminate these manual handoffs, reduce errors, and accelerate
overall release times. Fundamental to this is the notion of
application portability, a capability that allows teams to seamlessly
move applications from one environment to the next. Portability
is achieved through environment-aware application models that
are shared between development, test, and operations. Because
everyone deploys the same way using the same assets, the result
is consistent, accurate deployments every time across the various
environments of the lifecycle.

6. Little to no sharing of assets
One of the most egregious sources of redundant effort is the
“ownership” of assets. With their history as siloed organizations,
development and operations teams create and then seem to hoard
communications, resolutions, test scripts, usage information,
and numerous other assets that could be shared and reused to
eliminate duplication of effort and eliminate inconsistencies across
the application lifecycle. In too many IT organizations, sharing
doesn’t occur or is an afterthought—primarily because the potential
benefits just aren’t recognized. Here are just a few examples where
asset sharing and reuse can ease the burden:

•	 Automatically package test scripts created in development and
send them to operations for production monitoring so operations
need not recreate their own

•	 Import usage data from production to create more accurate and
realistic testing scenarios

•	 Automatically convert real user sessions from production into
performance scripts

•	 Leverage a shared knowledge-base of question, defect, and issue
resolutions so you don’t reinvent the wheel for recurring problems

7

21

3

Dev-test with lab
management automation

Automated deployment across
development and operations

Management, collaboration, and security for the complete lifecycle

Production patterns, snapshots, and images back to dev and test

Provision
dev and test

environments

Provision
and deploy
to staging

Deploy
test app

Run
test cases

Test
results

Provision
and deploy
to prod

Monitor

7. Work together, but remove dependencies
Closer collaboration between development and operations is a
good thing, but sometimes DevOps can mean just getting out of
each other’s way. Reducing dependencies can help both teams work
faster by removing handoffs and eliminating the need to wait for the
other team to complete their tasks.

Start by identifying the key dependencies between the teams that result
in latency or wasted time and work to remove or automate these pieces
of the process. For example, allow development teams to manage their
own environments using an automated lab management capability.
Operations is involved with the initial set-up, but then developers and
testers are free to provision and de-provision these environments
themselves on demand. This provides speed and flexibility for
development teams and frees operations up for other tasks.

HP and the three pillars of DevOps
The HP approach to DevOps rests on three solid pillars:

•	 Quality: the linchpin of the DevOps relationship and a prerequisite
for rapid change

•	 Automation: to accelerate release times, eliminate manual
handoffs, and reduce errors

•	 Collaboration: common goals, 360 degree visibility, and asset
sharing to unify traditional IT silos

By applying these key elements, you can overcome the biggest
obstacle in implementing DevOps—changing the traditional mindset
of your teams. We support our approach with a comprehensive suite
of integrated capabilities that can become the foundation for the
integration of your teams.

1	“Catalysts Signal the Growth of DevOps,” Gartner survey, February 2012.

2	Principles behind the Agile Manifesto.

Figure 3
The HP DevOps approach

HP can help you unify your development and operations functions
to eliminate critical disconnects in traditional processes.

http://agilemanifesto.org/principles.html

Get connected	
hp.com/go/getconnected	

Get the insider view on tech trends,
support alerts, and HP solutions.

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.
The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and
services. Nothing herein should be construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors
or omissions contained herein.

4AA4-2696ENW, Created August 2012

http://twitter.com/home/?status=Target%20the%20disconnects%20between%20development%20and%20operations+%40+http%3A%2F%2Fh20195.www2.hp.com%2FV2%2FGetDocument.aspx?docname=4AA4-2696ENW
http://www.facebook.com/sharer.php?u=http://h20195.www2.hp.com/V2/GetDocument.aspx?docname=4AA4-2696ENW
http://www.linkedin.com/shareArticle?mini=true&ro=true&url=http%3A%2F%2Fh20195%2Ewww2%2Ehp%2Ecom%2FV2%2FGetDocument%2Easpx%3Fdocname%3D4AA4-2696ENW&title=Target+the+disconnects+between+development+and+operations+&armin=armin
http://hp.com/go/getconnected

